The product-type operators from logarithmic Bloch spaces to Zygmund-type spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces

Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...

متن کامل

Generalized composition operators from logarithmic Bloch type spaces to Q_K type spaces

In this paper boundedness and compactness of generalized composition oper-ators from logarithmic Bloch type spaces to Q_K type spaces are investigated.

متن کامل

generalized composition operators from logarithmic bloch type spaces to q_k type spaces

in this paper boundedness and compactness of generalized composition oper-ators from logarithmic bloch type spaces to q_k type spaces are investigated.

متن کامل

Weighted Composition Operators from Logarithmic Bloch-Type Spaces to Bloch-Type Spaces

Recommended by Radu Precup The boundedness and compactness of the weighted composition operators from logarithmic Bloch-type spaces to Bloch-type spaces are studied here.

متن کامل

Extended Cesàro Operators from Logarithmic-Type Spaces to Bloch-Type Spaces

and Applied Analysis 3 2. Main Results and Proofs In this section, we give our main results and their proofs. Before stating these results, we need some auxiliary results, which are incorporated in the lemmas which follows. Lemma 2.1. Assume that g ∈ H Bn and μ : Bn → 0,∞ are normal. Then Tg : H∞ log → Bμ is compact if and only if Tg : H∞ log → Bμ is bounded and for any bounded sequence fk k∈N ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2019

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil1912639l